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When a constant coefficient of lateral eddy viscosity vO is used in ocean circulation 
models, a false computational space oscillation is generated in the western boundary 
region if vO is smaller than a critical value. The use of a nonlinear eddy viscosity coefficient 
based upon two-dimensional turbulence theory is shown to permit the use of an eddy 
viscosity which, away from the western boundary region, is at least an order of magnitude 
smaller than the above critical value. 

1. INTRODUCTION 

In the linear theory of the steady wind driven ocean circulation [l], the solution 
for the mass transport stream function has a westward intensification and an 
associated western boundary current of width 

L, = (274 G)(v&3>“3 (1) 

where y0 is the constant coefficient of lateral eddy viscosity and p = (252 cos ~)/a, 
where Q is the earth’s rotation rate, F is latitude, and a is the radius of the earth. 
This westward intensification and frictional boundary layer also exists in more 
realistic numerical models of the world ocean [2, 41 and it places a lower limit on 
the value of v,, that can be used with a given grid size. To be exact, Takano [3] 
showed that if v0 is sufficiently small such that 

L, < Ax/O.76, (2) 

where Ax is the east-west grid size, a false computational space oscillation appears 
in the numerical solution. On the other hand, in a numerical general circulation 
model with/lx N 300 km, if y0 is made large enough to prevent the false space 
oscillation, the open ocean solution is too viscous. Takano [3] further showed 
that the selective use of a slightly uncentered (upstream) finite difference approxi- 
mation to the beta-term in the vorticity equation suppresses the false oscillation 
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and thereby allows the use of a value of 1’” which is 50 “/ smaller than the minimum 
which satisfies (2). 

However, if one is interested in large-scale time-dependent motion in the open 
ocean (as in the North Pacific Experiment), then the above technique is not very 
satisfactory because the upstream differencing results in excessive damping of the 
transient motion. In addition, a realistic value of the lateral eddy viscosity in the 
open ocean which parameterizes the statistical effects of all motions on a scale 
smaller than the grid size is at least an order of mangitude smaller than that allowed 
by (2) [5, 61. Indeed, there are open ocean motions which, in fact, produce a 
negative eddy viscosity in the horizontal plane [7, 81 and it is hoped that by suffi- 
ciently reducing the sub-grid-scale eddy viscosity, more energetic and realistic 
grid-scale motions will be allowed to develop [8]. In order to do this, a more satis- 
factory approach from both a computational and a physical point of view is to 
use nonlinear eddy viscosity coefficients [9-l 11. Nonlinear eddy viscosity coefficients 
are increasingly sensitive to the spatial scale of the motion and therefore will be 
relatively small in the interior where the scales of motion are comparatively large 
and will be relatively large in the western boundary region where the scales are 
comparatively small. The condition (2) will be satisfied locally in the western 
boundary region, thereby preventing the false computational oscillation, while 
the interior ocean will enjoy a generally reduced and more realistic level of lateral 
eddy viscosity. Nonlinear lateral eddy viscosities have been used in ocean circu- 
lation models before [12, 131, but not for this express purpose. 

2. NONLINEAR EDDY VISCOSITY 

In a numerical model, the frictional force which arises due to lateral eddy 
viscosity parameterizes the convergence of horizontal momentum by oceanic 
eddy motions which are too small to be explicitly resolved by the grid. Since these 
motions are to a great extent geostrophic and quasihorizontal, it is appropriate 
to use eddy viscosity coefficients which are based on the theories of two-dimensional 
turbulence [l 1, 14, 151. Using the conservation laws of energy and square vorticity 
(enstrophy) which hold for two-dimensional turbulence, Kraichnan [14] and Leith 
[15] proved the existence of an inertial range in which the kinetic energy spectrum 
E(k) has a -3 power law 

E(k) = ml q2/sk-3, 

where LYE is a proportionality constant, 7 is the constant enstrophy cascade rate, 
and k is the wavenumber in the inertial range. It should be noted that the analogy 
between this -3 power law for 2-D turbulence and the familiar -5/3 power law 
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for 3-D turbulence is weak. The -3 power law is only an asymptotic state which 
may or may not be attained in a finite amount of time depending on the initial 
state. Under the additional assumption that the eddy viscosity coefficient v is a 
function of r] and k alone, one obtains by dimensional considerations 

v = 012q113k-2, (4) 

where 01~ is a nondimensional constant. This same relationship was derived by 
Bye [l l] for two-dimensional motion in a homogeneous ocean in which the dissi- 
pation occurs in a bottom-friction layer. Following Smagorinsky [9] and Leith [lo], 
the viscosity coefficient is made nonlinear by substituting into (4) the local value 
of the enstrophy dissipation rate, which is 

q = vvg * v<, (5) 

where 5 is the relative vorticity and V is the horizontal del-operator. The resulting 
eddy viscosity coefficient becomes 

v = c$~(V~ . V@” k-3. (6) 

If one now assumes that the space truncation wavenumber k = 27r/dx lies within 
the -3 power inertial range [lo], then according to (6), v is proportional to the 
magnitude of the gradient of relative vorticity computed on the grid. This is the 
basis for the form of lateral eddy viscosity used below. 

3. RESULTS OF THE NUMERICAL EXPERIMENTS 

The goal of these numerical experiments is to see whether the use of a nonlinear 
eddy viscosity coefficient can permit a generally low and realistic value of v to be 
used in the ocean interior and at the same time can suppress the computational 
space oscillation which would be generated in the western boundary region if the 
same low value were used uniformly over the entire basin. For this purpose the 
eddy viscosity coefficient is written 

v = “o(l + Y I vc I we3), (7) 

where v0 and y are constants. The quantity v,, essentially represents the minimum 
value of the eddy viscosity while y determines the variation of v between the open 
ocean, where the vorticity gradient is smallest, and the western boundary region, 
where it is largest. 

The above nonlinear eddy viscosity is applied to a barotropic model of the 
wind driven ocean circulation in a closed rectangular basin on a beta-plane. 



260 HANEY AND WRIGHT 

Assuming the current is nondivergent and independent of depth, the resulting 
circulation is governed by the vorticity equation 

where u and v are the velocity components in the x and y directions which point 
eastward and northward, respectively. In (8), F, and F, are the x and y components 
of the friction force due to lateral eddy viscosity, and are given by 

F, = G . @Vu), F, = V . (YVV). (9) 

The quantity (T, , ~3 is the surface wind stress, p is the (constant) density, and D 
is the (constant) depth. Bottom stress is neglected. Since the velocity is assumed 
nondivergent, it can be defined by a stream function 16, 

v = a#/ax, u = -a#jay, 

and upon substituting (10) into (8) a single equation in J,L is obtained. The boundary 
conditions of zero velocity at the lateral boundaries of the basin are expressed by 
setting the stream function and its normal derivative to zero, 

$ = a#/&2 = 0, on boundaries. (11) 

Numerical integrations out to 200 days were performed using a 33 x 17 array 
of points with a constant grid interval d = dx = dy = 300 km. Centered finite 
differences in space and time were used everywhere except in the lateral eddy 
viscosity term where a forward timestep was used. A Matsuno timestep [16] 
was used every 50 timesteps to prevent solution separation. Details of the numerical 
methods are in the appendix. Additional details of the numerical methods and 
results of tests with nonlinear eddy viscosity coefficients based on three-dimensional 
turbulence are given in Wright [20]. 

The circulation was forced by a steady wind stress curl which was a prescribed 
function of y alone, 

aT, a7 -2= T7T TY 
ax ay 

- - sin - 
B ( > B ’ m 

where T = 1 dyn cm-a and B = 4800 km is the north-south extent of the basin. 
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Experiments were performed using two different values of Y,, ; a moderate value 
V M - - 0.96 x lo* cm2 set-l for which the western boundary current width 
L, = dx, and a smaller value yS = vJ8 for which L, = AX/~. Figure la shows 
the familiar steady state analytic solution obtained by Munk [l] using the eddy 
viscosity coefficient V~ . 

Figure lb shows the numerical solution at 200 days obtained on the 300 km 
grid using the constant eddy viscosity coefficient Ye, . As predicted by the criterion 
of Takano (2), a very prominent computational space oscillation extends 
eastward from the western boundary because of the failure of the grid to properly 
resolve the western boundary current. In addition, the stream function is falsely 
amplified by a factor of almost 2 in the western boundary region. Figure lc shows 
the numerical solution obtained on the same 300 km grid using the nonlinear eddy 
viscosity (7) with v,, = vw and y = 0.55 x 1O-8 set cm-2. It is clear that the false 
computational space oscillation and solution amplification are almost completely 
suppressed. The actual values of v computed at the grid points (not shown) vary 
from 0.98 x lOa cm2 set-l throughout most of the open ocean to about 
5.5 x lo8 cm2 set-l in the western boundary region. 

Figure 2 shows the results of the more extreme case in which v,, is reduced by 
a factor of 8 over the previous case. When a constant viscosity is used (a), the 
solution is completely dominated and destroyed by a large-amplitude space 
oscillation which fills the entire basin. When nonlinear viscosity is used, and y is 
moderately large (b), the false space oscillation is greatly suppressed and the western 
boundary solution is quite similar to Fig. la and therefore is as realistic as one can 
expect to obtain with a 300 km grid. When y is increased by an order of magnitude 
(c), the false oscillation is completely suppressed; however, the western boundary 
current becomes broader and since its transport changes very little the current 
also becomes weaker. In both Figs. 2b and 2c, the western boundary current 
transport is very close to that expected from linear theory (Fig. la) which is 
determined only by the basin width and the wind stress curl. The actual values 
of v computed at the grid points in Fig. 2c vary from about 0.2 x 10s cm2 set-l 
throughout most of the open ocean to about 2.0 x lo3 cm2 set-l in the 
western boundary region. This open ocean value is more than an order of 
magnitude smaller than the constant value which would be necessary in order 
to avoid the false space oscillation. 

The above numerical examples show that the use of nonlinear eddy viscosity 
permits a lower and more realistic value of eddy viscosity in the open ocean 
without causing a false computational space oscillation which would occur if a 
constant viscosity were used. The usefulness of nonlinear eddy viscosity for this 
purpose is being tested at present in a more general ocean circulation model [21] 
which is being applied to the problem of predicting large-scale sea surface 
temperature anomalies in the open ocean as part of NORPAX. 
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FIG. 1. Stream function solution obtained using the reference viscosity q=O.96 x 108 cm* see-‘. 
Solutions are obtained (a) analytically using the constant viscosity Y = Q, and numerically using 
the nonlinear viscosity (7) with (b) y = 0, (c) y = 0.55 x W8 set cm-a. Isolines of 4 are drawn 
for every 0.2 x 108 cm8 see-I. 
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FIG. 2. Stream function solution obtained numerically using the nonlinear eddy viscosity (7) 
withv,=0.12x10*cm*sec-‘and(a)~=0,(b)~=5.5x10-*seccm-*,(c)y=5.5x10-~s~cm-*. 
Isolines of 4 are drawn for every 0.2 x 108 cm* see-I. 
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APPENDIX 

The finite difference approximation to (S), (9), and (10) is based upon the place- 
ment of variables shown in Fig. 3. The stream function is defined at integer values 
of the index i,j while the current is defined at half-integer values. The symbols 
used to denote spatial derivatives and averages, respectively, over the grid distance 
d are 

U 1 = WM >i+l,i - ( >i,A 
(Al) 

0 = H( )i+l.i + ( )i.ih 

with similar definitions for a,( ) and ( )“. 

FIG. 3. 

1 ,..!.. ,‘, , .!. ,* ‘,, -,7-T i-- EAST 

Placement of the variables in the (x, y)-plane. 

The currents are obtained from the predicted stream function by the following 
finite difference approximation to Eq. (10). 

%+llB.i+1/2 - - -u$w. 
643 

The eddy viscosity terms, which are also defined at the half-integer points, are 
given by the following finite difference approximation to (9). 

(E;c)i+112.~+1,2 = w%w + wyw4, 

(Fu)i+112.j+1/2 = ~,(~%(u)) + ~,W,(u)). 
643) 

The nonlinear eddy viscosity coefficient Y is defined at the half-integer points by 
the following finite difference approximation to (7). 

~i+1/2.i+1/2 = dl + Y(@,@‘Y))~ + @,(&12Y’” d31. b44) 
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In (A4), the vorticity is defined at the integer-points by 

&j = S,(P) - S,(iP). (A5) 

According to the above expressions, the vorticity must be calculated on the 
lateral boundaries while the velocities and eddy viscosity must be averaged across 
the boundaries. These quantities are calculated from (A2) using a symmetric 
profile of # across the boundary (i.e., a#/& = 0 on the boundary) as well as 
# = 0 on the boundary itself. This is in accordance with the lateral boundary 
condition of zero slip (11). 

Letting ( )” denote the time level and dt the timestep, the finite difference 
approximation to (8) is 

Y 
xn 

- S,(-S,(u”“?P) - sy(~yu_y)) I 

+ [S,(F,‘) - Su(FJIn-l - s sin (y), 

where the finite difference approximation for the Laplacian on the left side of (A6) 
is the usual five-point approximation 

P2#i,i = uL(~) + %A/(~). (A7) 

Equation (A6) was solved numerically, with zj = 0 on the boundary, using a 
fast and accurate cyclic reduction method [17, 181 programmed by Sweet [19]. 
Time integration was accomplished using a timestep At = 14 h. 
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